MEIDEN

Engine Driven Synchronous Generators

Ensure stable electrical power supply for all kinds of industries.

Empower for new days

Meidensha has always provided generators meeting the changing needs of society through continuous R&D since its foundation in 1897.

We offer high performance engine-driven generators under our corporate philosophy "Illuminating a more affluent tomorrow" and "For customer peace of mind and satisfaction."

10MW

20MW

Features

Manufacturing Range

Standard Ratings

	Item		Si
	Service Condition	Temperature range	-15~40°C
		Altitude (a.s.l)	1000m or belo
		Relative humidity	90% Max.
	Application		Continuous
	Rated output		5~28MVA
	Voltage		3,300V•6,600
	Power factor		90% (Lagging)
	Frequency		50Hz•60Hz
	No. of poles		8~14
	Standard		JEC2130 · IEC
	Protection degree		IP21
	Cooling		IC01
	Insulation class		155(F)
	Temperature rise limit		155(F)
	Type of rotor		Salient pole
	Lubrication system		Forced lubrica
	No. of bearing		One(1) or Two
	Excitation system		Brushless exc

Experiences

- For private electric power company in Japan
- 8,667 kVA
- 11,000 V8 poles
- 50 Hz
- 750min⁻¹
- For public electric power company in Japan
 17,647 kVA
- 6,600 V
- 19 poloo
- 18 poles
- 60 Hz
- 400min⁻¹

tandard	Variation	
)W	Negotiable	
V•11,000V•13,800V		
•80% (Lagging)		
	Negotiable	
60034		
	130(B)	
ition	Self-lubrication	
0(2)		
itation with PMG	Excitation transformer instead of PMG	

- For public electric power company in Middle East
- 18,750 kVA
- 6,600 V
- · 12 poles
- 50 Hz
- 500min-1
- For private factory in Japan

- 8,667 kVA
- 6,600 V
- 8 poles
- 50 Hz
- 750min⁻¹

10MW

Class

10MW

Construction of Engine Generator

 • Cross Sectional View

Stator

• Armature winding

Armature windings are insulated by Meiden's latest technology under strict quality control to be free from insulation deterioration during long-term use.

Insulated coils are placed into the stator core grooves and fixed with wedges. Coil ends are connected with each other and tightened rigidly with coil supports. The whole stator is treated by Vacuum Pressure Impregnation (VPI). VPI eliminates all voids in the windings and integrates the coils and core, implementing electrically and mechanically superior insulation characteristics.

Rotor

• Magnetic Pole Core and Damper Winding

Magnetic pole core is made of steel sheets laminated and firmly fastened with clamps, reducing surface loss. Damper windings are embedded around the magnetic pole.

Mechanical Balancing

Generators are designed and manufactured with special attention to static and dynamic balancing. Mechanical balance is adjusted and verified during machining and assembly. This enables a long-term stable generator operation with proper mechanical balance.

• Stator Core

The stator core is made of high quality, cold-rolled, surface insulated, silicon steel laminations with minimal core loss. These laminations are accurately punched into round core stacks and segment core stacks with slot for stator windings. In order to cool the core and winding, ventilation ducts are provided at proper intervals. The core stacks are tightened from their both ends and are fixed with the frame.

• Stator Frame

The stator frame is constructed of welded steel plate. This frame supports the stator core and also rotor by single bearing, so that the stator frame is designed to have sufficient strength and rigidity to withstand electromagnetic force in the event of short circuit fault in power supply.

Bearing

Bearing

Bearing is single and self-lubrication type as a normal specification. The bearing is made of cast iron shell lined with the best quality white metal.

• Field Winding

Coils are wound edgewise with flat type copper wire, subjected to layer and ground insulation treatment, heated and pressurized to be hardened, and then put into the core. The rotor will be completed to be durable enough for long-term use.

• Shaft Current Interrupter

The generator employs an insulation system for the prevention of shaft current because the shaft current must be interrupted for the safety of bearing. A measure for shaft current interruption is made inside the bearing so that it is high reliability.

20MW

Class

20MW

Construction of Engine Generator

Or entropy of the entropy of the

Stator

• Armature winding

Armature windings are insulated by Meiden's latest technology under strict quality control to be free from insulation deterioration during long-term use.

Insulated coils are placed into the stator core grooves and fixed with wedges. Coil ends are connected with each other and tightened rigidly with coil supports. The whole stator is treated by Vacuum Pressure Impregnation (VPI). VPI eliminates all voids in the windings and integrates the coils and core, implementing electrically and mechanically superior insulation characteristics.

Rotor

• Magnetic Pole Core and Damper Winding

Magnetic pole core is made of steel sheets laminated and firmly fastened with clamps, reducing surface loss. Damper windings are embedded around the magnetic pole.

• Mechanical Balancing

Generators are designed and manufactured with special attention to static and dynamic balancing. Mechanical balance is adjusted and verified during machining and assembly. This enables a long-term stable generator operation with proper mechanical balance.

Bearing

Bearing

Bearing is double and forced-lubrication type as a normal specification. The bearing is made of cast iron shell lined with the best quality white metal.

Stator Core

The stator core is made of high quality, cold-rolled, surface insulated, silicon steel laminations with minimal core loss. These laminations are accurately punched into round core stacks and segment core stacks with slot for stator windings. In order to cool the core and winding, ventilation ducts are provided at proper intervals. The core stacks are tightened from their both ends and are fixed with the frame.

Stator Frame

The stator frame is constructed of welded steel plate. This frame supports the stator core and also rotor by double bearings, so that the stator frame is designed to have sufficient strength and rigidity to withstand electromagnetic force in the event of short circuit fault in power supply.

• Field Winding

Coils are wound edgewise with flat type copper wire, subjected to layer and ground insulation treatment, heated and pressurized to be hardened, and then put into the core. The rotor will be completed to be durable enough for long-term use.

• Shaft Current Interrupter

The generator employs an insulation system for the prevention of shaft current because the shaft current must be interrupted for the safety of bearing. A measure for shaft current interruption is made inside the bearing so that it is high reliability.

Brushless Excitation System

• Diagram of Brushless Excitation System

The standard brushless exciting device consists of an AC exciter (ACEX), a rotating rectifier, and a permanent magnet generator (PMG).

10MW

• AC Exciter (ACEX)

The AC exciter comprises the stator for the field and the rotor for the armature, similar to the rotary-armature-type generator. The AC exciter is installed inside of a bearing. The pole is of salient type and made of layers of steel sheets. Rhe rotor core is made of layers of steel sheets. All the windings are insulated with class "F" insulating materials.

Rotating Rectifier

The rotating rectifier is installed inside of a diodes. The silicon diodes are connected to form a 3-phase full-wave rectifier circuit.

Protection System

The standard protection system is drip proof protection type (IP21).

Totally enclosed system is also applicable due to the environment condition.

Cooling System

The standard cooling system is free ventilation type (IC01).

With this type, external air is circulated by axial fans installed at the rotor end and exhausted to the outside of the casing.

According to the generator construction, single suction type with one way suction from the casing or double suction type from both side of the casing is applicable.

• Permanent Magnet Generator (PMG)

PMG is used as a sub-exciter, requiring no initial exciting device. It can supply a sustained short circuit current to trip the circuit breaker in accordance with associated protective devices.

Double suction type

Protection · Cooling System

Single suction type

Totally enclosed type (IC44) is also applicable to inner air circulated with water-air heat exchanger mounted on the upper of the generator casing.

IN

Abstract

The Meiden AVR [YNEX06D] is adopted as a standard AVR unit. The digital automatic voltage regulator (AVR) [YNEX06D] covers the functions of conventional analog automatic voltage regulators. If two units of this type are used, the functions of a dual system become available. Since a variety of options are used, space saving is possible for switchboards.

MEDEN

Ratings

Item	Specifications
Main circuit element	IGBT
Control system	PID control
Mass	7.8 kg
Control source voltage DC source	Input: DC24V 3A Max.
(Dual source) AC source	Input: AC110V 40~240Hz 0.7A Max.
Output contact capacity of power source fault	Load current 150mA Max., AC6~240V DC5~125V
Rated input voltage	AC110V or AC220V 40~240Hz
Rated output current	DC20A
Bus VT	AC110V 0.5VA Max.
Generator VT	AC110V 0.5VA Max.
Generator CT	AC5A 0.5VA Max.
Operating temperature	-20~60°C (Hot start)
Relative humidity	95%RH Max. with no dew condition
Storage temperature	-20~70°C
Altitude	1000m or below
Cooling system	Natural air cooling

Functions

Item	Specifications	
Automatic voltage control (AVR)	Voltage control range (90R)	90~110%
	Voltage control accuracy	Within±0.5%
	Full stroke time	60 seconds
	Field current control range (70E)	0~130%
Automatic field current control (AIFR)	Field current control accuracy	Within±0.5%
	Field stroke time	60 seconds
Voltage establishment control	Smooth start method	0~100 seconds
function	Step start method	-
Cross-current compensation function	Setting range	0~10%
V/Hz function	Voltage droop method set value (setting of droop point)	70~100% default 85%
Field overcurrent function (76E)	Operating value	105~130%
Device factor & reactive power	A-item setting range	-1.0~1.0PU
Power lactor & reactive power	B-item setting range	-0.7~0.7 cosφ
Q=A+BP method	Reactive power control accuracy	Within±2%
	Power factor control accuracy	Within±2°
	Overcurrent limiter(OCL), Over excitation limiter(OEL), Under excitation limiter(UEL)	
Reactive power limitation	OCL boundary setting	0~100%
functions (VARL)	Setting on lag side	10 points Max.
	Setting on lead side	10 points Max.
	Excitation diode failure detection function(DFDR)	
	Line drop compensation function(LDC)	
	Power system stabilizer(PSS), 3lead-lag/4 step lead-lag (Default 3 lead-lag)	
Optional functions	Automatic synchronized closing function	
	Synchronism detection function	
	Dual function (Serial connection, 480.6kB fixed)	
	Communication (PROFIBUS DP)*	

• Dimensions

 Connection Diagram

Block Diagram Ua Major loop 1+STa 90R Ka STa La 1+ST2 1+ST1 Cross-current compensatior Kc

(*1) Use an auxiliary transformer, if the PMG voltage is 220V

MEIDENSHA CORPORATION

ThinkPark Tower, 2-1-1, Osaki, Shinagawa-ku, Tokyo, 141-6029 Japan

www.meidensha.co.jp