High Purity Ozone Gas Generator

Pure Ozone Generator

Equipment to Supply Pure Ozone Gas (≒100%) Continuously
Pure Ozone Generator

High Purity Ozone Gas Generator

Features

Continuous supply of high purity ozone gas

Principle
This apparatus uses the ozone gas produced from oxygen gas via an ozonizer and subjects it to separation and accumulation through a liquefaction method in an ozone chamber cooled by a cryogenic chiller, producing highly concentrated liquid ozone and then subjecting it to regasification, thereby supplying ozone gas of high purity (95% or higher).

Continuous supply system
Continuous supply of high purity ozone gas free of heavy metal impurities
Through the parallel connection of multiple ozone chambers, this system enables continuous supply of high purity ozone gas.

Application

A promising technology and method utilizing pure ozone gas

Pure ozone processing technology

- This method involves causing direct reaction of ozone which has strong oxidizing power without impurities.
- This is an effective technology for low-temperature, high-speed oxidation of semiconductor chips and for providing an oxidation gas source and in-situ cleaning for high-performance thin-film production equipment (molecular beam epitaxy, etc.).

Pure ozone-ethylene technology

- This method involves the addition of a reaction-accelerating gas (ethylene) to pure ozone (Patent No. 5287558).
- This is an effective technology for removal of organic matter at room temperature and surface reforming.

Low-temperature deposition technology

- This technology enables low-temperature oxidation by powerful OH radicals formed from pure ozone-ethylene (oxidation at room temperature can also be expected).
- A reaction does not occur unless it is pure ozone (100%).
- The technology is also capable of accommodating R2R and can be expected to improved productivity.

Safety Measurement

Always keep the system safe by operating under the condition of high purity and low pressure.

Safe Design
- Explosion-proof Design
- Temperature / pressure control with the fail safe system by power failure / trouble.

Reliability
- Has an emergency purge mechanism to dilute ozone in the process gas line and discharge residual ozone within the apparatus in times of power outage.
- Can be switched off manually by an EMO (emergency off) switch in the event of any anomaly (chiller has an operation maintenance function to prevent ozone explosion).
- Even in the unlikely event of an ozone explosion, the structure is designed to prevent any mechanical damage to external equipment by having the liquefaction chamber housed within a vacuum-insulated stainless steel container.
- The liquid ozone cooling unit has sufficient capacity for the amount of accumulated liquid ozone so as to reduce the risk of rapid vaporization due to vibration, which otherwise is a risk factor for explosion.

Standards Certification
- The unit is conformed to international standards: SEMI-S2, UL, NFPA, CE etc.

Quality Assurance
- Safety against gas leakage is verified by tracer gas test of a third-party certifier.
Example

Deposition on film (low-temperature deposition technology)

- Deposition on film at room temperature

![Cross-sectional TEM image](image)

- PEN has resistance to the ozone CVD process.

Ashing in the semiconductor process (pure ozone-ethylene technology)

- Ashing after high ion implantation (resist removal)

![Silicon substrate with high ion implantation resist](image)

- Resist ashing apparatus using pure ozone

- Pure ozone ashing (<100℃)

Application

<table>
<thead>
<tr>
<th>Field</th>
<th>Application</th>
<th>Applied technology</th>
<th>Expected effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Water treatment</td>
<td>Pure ozone processing</td>
<td>Sterilization, deodorizing</td>
</tr>
<tr>
<td></td>
<td>Recycling</td>
<td></td>
<td>Carbon fiber decomposition</td>
</tr>
<tr>
<td>Medicine</td>
<td>New drug manufacturing (biotech)</td>
<td>Pure ozone processing</td>
<td>Organic synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Low-temperature deposition</td>
<td>Removal, adhesion, thin film</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pure ozone-ethylene</td>
<td></td>
</tr>
<tr>
<td>Film</td>
<td>Organic EL</td>
<td>Pure ozone-ethylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food packaging/medical devices</td>
<td>Pure ozone-ethylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar cells</td>
<td>Pure ozone-ethylene</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>Electrode components</td>
<td>Pure ozone-ethylene</td>
<td>Oxide film</td>
</tr>
<tr>
<td></td>
<td>Carbon nanotubes</td>
<td>Pure ozone-ethylene</td>
<td></td>
</tr>
<tr>
<td>Semiconductors</td>
<td>Mask manufacturing process</td>
<td>Pure ozone-ethylene</td>
<td>Removal</td>
</tr>
<tr>
<td></td>
<td>Pre-process</td>
<td>Pure ozone-ethylene</td>
<td>Oxide film removal</td>
</tr>
<tr>
<td>High technology</td>
<td>MEMIS</td>
<td>Pure ozone-ethylene</td>
<td>Cleaning, reforming</td>
</tr>
<tr>
<td></td>
<td>Molecular beam epitaxy (MBE)</td>
<td>Pure ozone processing</td>
<td>Pure oxide source</td>
</tr>
<tr>
<td></td>
<td>Printed electronics</td>
<td>- Low-temperature deposition</td>
<td>Reforming, adhesion, low-temperature thin film</td>
</tr>
</tbody>
</table>

Device Configuration (Continuous Supply Type)

- **Ozone processing**
- **Resist ashing apparatus using pure ozone**
- **Pure ozone ashing (<100℃)**

![Diagram of device configuration](image)
Specification

<table>
<thead>
<tr>
<th>Type</th>
<th>Batch Type (Standard)</th>
<th>Continuous Supply Type (Large capacity)</th>
<th>Continuous Supply Type (Auto Flushing Function Available)</th>
</tr>
</thead>
</table>

Unit Configuration

<table>
<thead>
<tr>
<th>Number of Ozone Chamber</th>
<th>Main</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Standby</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Rating

<table>
<thead>
<tr>
<th>Store Part</th>
<th>Main Ozone Gas Value (cc)/Chamber</th>
<th>Continuous Supply Rate (sccm)</th>
<th>Ozone Gas Purity Rate (%)</th>
<th>Continuous Supply Time</th>
<th>National Safety Standards: SEMI-S2, UL, NFPA, CE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,000/ Chamber</td>
<td>1 to 20</td>
<td>More than 92</td>
<td>6h to 130h</td>
<td>Conformable</td>
</tr>
<tr>
<td></td>
<td>16,000/ Chamber</td>
<td>20</td>
<td>More than 92</td>
<td>Max. 13h</td>
<td>Conformable</td>
</tr>
<tr>
<td></td>
<td>16,000/ Chamber</td>
<td>100</td>
<td>More than 92</td>
<td>Continuous Supply</td>
<td>Conformable</td>
</tr>
</tbody>
</table>

Safety Control

- Negative Pressure Control
 - Available
- Shutdown Function by Power Failure/Earthquake
 - Available
- Auto Flushing Function
 - Available
- In Unit Operation
 - Available

National Safety Standards

- Conformable

External View (Measurement without protrusion) [unit: mm]

Continuous Supply Type

- Chiller
- CAB (Side)
- CAB (Front)
- POGB

Batch Type

- CAB
- POGB

1. Standard Ozone Gas Values are the capacity/flow rate values at the 0℃, 1 atm.
2. This function checks the negative pressure and controls not to leak ozone out of board.
3. This function detects the power failure/earthquake (100-200 GAl) and stops the whole unit automatically.
4. This function automatically flushes with the auto mode accumulated impurities in the ozone chambers.
5. This unit can always be on-standby with flushing an idle chamber automatically.
Applications/ Notifications(for the Domestic Use in Japan)

By Establishment of this Equipment, you need to submit applications/ notifications to the Prefecture. We support by creating the forms.

- High Pressure Gas Production Notification
- High Pressure Gas Production Facilities Change Notification
- Class 2 Storage Place Establishment Notification
- Class 2 Storage Place Position Change Notification

This Equipment is developed by AIST (National Institute of Advanced Industrial Science and Technology) and Meidensha.

MEIDENSHA CORPORATION
3-9, Osaki, Shinagawa-ku, Tokyo, 141-0032 Japan

www.meidensha.com