

Recommendation of Quality come Upgrading to Retrofit Type Vacuum Circuit Breakers

Installed unit (model VE-2)

Retrofit unit (model VR-2SDR)

Recommendation of equipment upgrading to retrofit VCB

The retrofit VCB is ideal for preventing downtime of equipment and disasters caused by equipment failure, thus realizing stable operation and energy savings.

Risks due to aging of circuit breakers

Occurrence of failure or accidents

- Interference with operation due to grease sticking, etc.
- Decrease in durability due to aging deterioration, resulting in breakdown of parts
- Occurrence of burnout accidents
-> Three-phase short-circuit accidents caused by deterioration of the insulation mold
- Motor burning caused by insulation deterioration of the coil wires

Depletion of replacement parts

Difficulty of procuring parts or materials because they are no longer manufactured

Increased maintenance and restoration expenses

Occurrence of damage and loss caused by downtime of production equipment

Increased expenses and time required for restoration

When there is contamination or moisture absorption of the insulation material, the insulation function decreases and partial discharge occurs.

Estimated causes

Insulation contamination, moistur absorption, etc.

Insulation resistance reduction

The recommended time for upgrading circuit breakers is 20 years after start of use or when the specified number of switching actions has been reached (2,000 times)*.

* The mechanical or electrical switching cycle life listed in the manufacturer's catalog or instruction manual or the switching cycle life agreed upon between the user and the manufacturer. (Source: JEM-TR174 High-voltage circuit breaker maintenance and inspection guide)

We recommend early upgrading to the newest retrofit VCB to ensure sound equipment and safe operation.

Occurrence of partial discharge caused by insulation

The parts with black discoloration in a tree shape or in the form of soot are locations where tracking occurs.

Tracking:Partial discharge occurs at the surface because of insulation deterioration and the surface shows traces of carbonization

Progress to short-circuit between phases

Advantages of retrofit VCB

What is a retrofit VCB?

This VCB is for replacement or upgrading and is compatible in regard to electrical functions, performance, and construction. As the upgrade work is easy, the work time at the site is short, increasing reliability and offering other advantages too.

Simplification and shortening of the upgrade work time at the site

(1) Shut-down of the bus bar is not required, and upgrading can be done while other circuits are still operating.

2 As upgrading is possible without panel modification, the upgrading work time can be shortened.

Note:In some cases, upgrading without bus bar shut-down and without panel modification may not be possible. Please contact us for details.

Retrofit upgrade example

VE-1-type VCB (before upgrade)

VB-2SDB-type VCB (after upgrade)

Improved reliability

③ The insulation withstand voltage is improved (greaseless VCB: type VR-DR) The 6-kV VC, VE insulation frame used a three-phase collective type, but the VR-DR uses a three-phase separate type which suppresses insulation deterioration.

④ Reduced sticking problems of component parts

The use of high-performance grease reduces sticking problems caused by grease deterioration (comparison by our company). For some models, the operation mechanism is greaseless, so no lubrication is required. As a result, problems with sticking are eliminated.

(5) Reduction of component parts of the mechanism (greaseless VCB: type VR-DR) The VR-DR VCB uses a latch mechanism with a permanent magnet, so that a mechanical latch mechanism is not required. There is also no complicated link mechanism.

Reduced power consumption (greaseless VCB:type VR-DR)

(6) As the operation current is reduced, the power consumption can be reduced.

Example: Operation current comparison for a 6 kV-20/25 kA at DC 100 V VCB

30 A (type VC)56 A (type VE)

Reduced expense of inspection (greaseless VCB: type VR-DR)

(6) As the mechanism no longer requires lubrication, the work load at the time of inspection can be greatly reduced (the amount of work is 43% of that for existing equipment). Furthermore, the improved reliability makes it possible to extend the periodic inspection interval (from 3 to 6 years).

In comparison to existing VCBs, the inspection work load has been greatly reduced.

By using an electromagnetic actuator of the permanent magnet holding type without a latch mechanism or an accumulation mechanism, a greaseless mechanism is achieved and lubrication work for the operation mechanism is no longer reauired.

nspectio 46%

Inspection type	Main inspection item	Inspection interval for existing VCBs	Inspection interval for VR-DR VCBs (electromagnetic operation)	
Regular inspection	Cleaning of vacuum interrupter	3year	6year	
	Cleaning of insulation material	3year	6year	
	Switching operation test	3year	6year	
	Measuring of main circuit insulation resistance	3year	6year	
	Measuring of control circuit insulation resistance	3year	6year	
Detailed inspection	Confirmation of contact wear of vacuum interrupter	6year	12year	
	Judgment of vacuum quality	6year	12year	
	Cleaning and grease-up of main circuit disconnection part	6year	12year	
	Lubrication of operation mechanism	6year	Unnecessary	
	Confirmation of switching characteristics	6year	12year	

Electromagnetic operation equipment

There are only 10 component parts. The reliability has been improved by changing to a greaseless type.

 Conceptual diagram of the operation mechanism

•The mechanism is simple because there is no latch mechanism.

·A greaseless mechanism has been realized by using a solid lubricant for bearings and sliding parts.

VJ electric spring operation mechanisr

VR-DR electromagnetic operation mechanism

Inspection work load for existing VCBs 100%

Inspection work load for a VR-DR VCB (electromagnetic) 43%

* The above pie graphs show a comparison of the inspection work load for 24 years of use.

Retrofit VCB/VCS list

7.2 kV/3.6 kV retrofit VCB

Existing circuit breaker				Retrofit VC	СВ	
Туре	Model	Model (example)	Rating	Model	Model	R
QS-1B	QSH-1FZ62SB		VLOOD	VBJD-6220BF-ER	7.0/0.010/.0004.40	
	00.10	QSH-1FZ62SD	7.2/3.6KV-600A-12.5/16KA	VJ-25H	VBJD-6220BG-ER/FR	7.2/3.6KV-600A-12.
	Q3-1D	QSH-1FZ65SD	7.2/3.6kV-1200A-12.5/16kA		VBJD-6525BG-ER/FR	7.2/3.6kV-1200A-12
ОСВ	QS-2B	QSH-2FZ62SB	7.2/3.6kV-600A-20/25kA		VBJD-6225BF-ER	7 0/2 6/21 600 4 00/
	QS-2D	QSH-2FZ62SD		VJ-2R	VBJD-6225BG-ER/FR	7.2/3.0KV-000A-20/2
	QS-2B	QSH-2FZ65SB			VBJD-6525BF-ER	7.0/0.013/ 40004.00
	QS-2D	QSH-2FZ65SD	7.2/3.0KV-1200A-20/25KA		VBJD-6525BG-ER/FR	7.2/3.0KV-1200A-20
	NO 4	VBCD-6215SE/F	7.2/3.6kV-600A-12.5/16kA		NVBRD-6213SC-ER/FR	7.2/3.6kV-600A-12.5
	VC-1	VBCD-6515SE/F	7.2/3.6kV-1200A-12.5/16kA		NVBRD-6513SC-ER/FR	7.2/3.6kV-1200A-12.
		VBCD-6225SE/F	7.2/3.6kV-600A-20/25kA	VR-2SDR	NVBRD-6220SC-ER/FR	7.2/3.6kV-600A-20k
	VC-2	VBCD-6525SE/F	7.2/3.6kV-1200A-20/25kA		NVBRD-6520SC-ER/FR	7.2/3.6kV-1200A-20
		VBCD-6725SE/F	7.2/3.6kV-2000A-20/25kA		NVBRD-6720SC-ER/FR	7.2/3.6kV-2000A-20
	VE-1	VBED-6213SE/F	7.2/3.6kV-600A-12.5kA	VR-2SDR	NVBRD-6213SE-ER/FR	
	VE-1L	VBED-6213SEL/FL		VR-1LDR	NVBRD-6213SE-ELR/FLR	7.2/3.6KV-600A-12.5
VCB	VE-2S	VBED-6220SE/F	7.2/3.6kV-600A-20kA		NVBRD-6220SE-ER/FR	7.2/3.6kV-600A-20k/
		VBED-6525SE/F	7.2/3.6kV-1200A-25kA	VR-2SDR	NVBRD-6520SE-ER/FR	7.2/3.6kV-1200A-20k
	VE-2	VBED-6725SE/F	7.2/3.6kV-2000A-25kA		NVBRD-6720SE-ER/FR	7.2/3.6kV-2000A-20
	VN-1	VBND-6213S-M	7.2/3.6kV-600A-12.5kA	VR-1DR	VBRD-6213SN-MR	7.2/3.6kV-600A-12.5
		VBED-6540SE/F	7.2/3.6kV-1200A-40kA		VBED-10540BU-E/F-S	7.2/3.6kV-1200A-40
	VE-4	VBED-6740SE/F	7.2/3.6kV-2000A-40kA	VE-14C	VBED-10740BU-E/F-S	7.2/3.6kV-2000A-40
		VBED-6840SE/F	7.2/3.6kV-3000A-40kA		VBED-10840BU-E/F-S	7.2/3.6kV-3000A-40

12 kV retrofit VCB

Existing circuit breaker				Retrofit VCB				
Туре	Model	Model (example)	Rating		Model Model Rating			
	VE-14	VBED-10536BE/F	12kV-1200A-36.1kA			VBED-10540BU-E/F 1	126// 12004 4064	
	VE-14A	VBED-15537BE/F	12kV-1200A-40kA	-			1280-1200A-408A	
VCP	VE-14	VBED-10736BE/F	12kV-2000A-36.1kA					
VCD	VE-14A	VBED-15737BE/F	12kV-2000A-40kA		VE-140	VE-140 VBED-10/4000-E/F	VBED-10/40BO-E/F	12KV-2000A-40KA
	VE-14	VBED-10836BE/F	12kV-3000A-36.1kA			VBED-10840BU-E/F	12kV-3000A-40kA	
	VE-14A	VBED-15837BE/F	12kV-3000A-40kA	/				

24 kV retrofit VCB

Existing circuit breaker				Retrofit VCB/VCS			
Туре	Model	Model (example)	Rating		Model	Model	
VCB/ VCS	VB-210	VBBD-202100S-E/F	24kV-600A-25kA		VE-210R	VBED-20225BL-E/F	24kV-600A-25kA
	VB-210	VBBD-205100S-E/F	24kV-1200A-25kA			VBED-20525BL-E/F	24kV-1200A-25k
	VB-210	VBBD-207100S-E/F	24kV-2000A-25kA	VE-210R		VBED-20725BL-E/F	
	VB-210	VBBD-207100BC				VBED-20725BD-R	24KV-2000A-25KA
	VB-210	VBBD-208100BC	24kV-3000A-25kA			VBED-20825BD-R	24kV-3000A-25k/
	VS-210	VBSD-20513BC	24kV-1200A			VSE-210R	VSED-20503BD-R
	VE-22	VBED-20225BE/F	24kV-600A-25kA		VE-22N	VBED-20225BN-E/F	24kV-600A-25kA
	VE-22	VBED-20525BE/F	24kV-1200A-25kA		VE-22N	VBED-20525BN-E/F	24kV-1200A-25k
	VE-22	VBED-20725BE/F	24kV-200A-25kA		VE-22N	VBED-20725BN-E/F	24kV-200A-25kA

The "yellow-colored" items are greaseless VCBs and the "light-blue-colored" items are VCBs/VCSs that use high-performance grease (note).

Note: This grease does not solidify compared with those used for the existing devices.

For upgrading	Please provide the following information if you plan to upgrade.		
	1. Types of existing equipment		
	2. Number of upgrade units		
	3. Production No. and year of production of existing equipme		
	4. Planning time		
	Ĭ		

MEIDEN ENGINEERING CORPORATION

5-5-5, Osaki, Shinagawa-ku, Tokyo, 141-8607 Japan E-mail : customercenter@mb.meidensha.co.jp

www.meidensha.com/mec/

THAI MEIDENSHA CO., LTD.

15th Floor, Rasa Tower II, 555 Phahol Yothin Road, Chatuchak, Chatuchak, Bangkok 10900, Thailand Phone: 66-2792-4200 Facsimile: 66-2792-4299 **MEIDEN ELECTRIC (THAILAND) LTD.** 898 Moo 2, Bangpa-in Industrial Estate, Udomsorayuth Rd., Klongjig, Bangpa-in, Ayutthaya 13160, Thailand Phone: 66-35-258258~59,60 Facsimile: 66-35-258261,62

Specifications in this catalog are subject to change without notice.