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1 Preface

When designing a control system for large-
scale and complicated electrical and mechanical 
facilities, various factors in the control system such 
as characteristic changes, load variations, reso-
nance, disturbance, and non-linearity can be a 
cause of deterioration in system controllability. In a 
worst case scenario, the system becomes unstable 
and control failure may occur. It is necessary to 
establish a robust control system for protection 
against these causes accordingly. In particular, 
periodic disturbance, which is caused intermittently 
at a specific frequency, appears frequently in the 
result of control and it can give rise to serious prob-
lems such as expansion of resonance phenomena. 

For example, a periodic disturbance like har-
monics in the power distribution system can adversely 
affect the power distribution equipment in the sys-
tem. This type of disturbance is therefore controlled 
and stipulated according to the guideline in regard 
to harmonics. Going forward, the introduction of 
smart grids and distributed power systems by 
renewable energy resources will be promoted. 
When an unspecified large number of such power 

converters are interconnected with utility power 
grids, the sources of harmonics are complicated. In 
addition, there will be fluctuations of power system 
impedance caused by changes in power distribution 
equipment configuration, and variation in system 
management. Conventionally, Active Filters (AFs) 
have been utilized to cope with harmonics. In this 
case, however, it is necessary to readjust the con-
trol parameters according to changes in the afore-
mentioned system characteristics. In some cases, 
harmonics propagation phenomena will occur. For 
this reason, we are requested to develop more 
advanced auto-tuning technologies in order to cope 
with various kinds of system variations. 

In a mechanical system where rotary machines 
are used, a Permanent Magnet synchronous motor 
(PM motor), for example, generates torque ripples, 
which are regarded as periodic disturbance. These 
torque ripples can give rise to mechanical reso-
nance, vibration, and noise. If torque ripples cannot 
be reduced by simply modifying the mechanical 
structure of the rotary machine, inverters may be 
used to cancel such a torque pulsation. In this case, 
however, it is necessary to perform suppression 
control in consideration of electrical and mechanical 
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transfer characteristics of inverters and mechanical 
systems being connected. 

Against such a technological background, this 
paper provides explanations of our technical review 
on periodic disturbance suppression control tech-
nology by a generalized periodic disturbance observer 
with auto-learning functions on the system charac-
teristic. In addition, as an example of application, 
the features of AF control against grid harmonics 
and torque ripple suppression control for PM motors 
are introduced. 

2 Generalized Periodic Disturbance 
Observer (1) (2)

2.1 Basic Control Configuration 
Since periodic disturbance is primarily caused 

at a specific frequency, its frequency component is 
extracted to establish a suppression control system. 
Here, a dnqn rotating coordinate system (real part 
defined as Axis dn, imaginary part as Axis qn) syn-
chronized with periodic disturbance of n-th frequen-
cy is defined. As shown in Fig. 1, I/O signals and 
their system transfer characteristics can then be 
expressed in one-dimensional complex vector. Fig. 2 
shows the basic configuration of the generalized 
periodic disturbance observer established based on 
the aforementioned rotating coordinates. In this dia-
gram, a vector notation for each signal denotes the 
complex vector. GF (s) is a Low Pass Filter (LPF) that 
functions in response to a real-and imaginary com-
ponent respectively after rotating coordinate trans-
formation. It is used for the extraction of frequency 
components. The real system Pn denotes the fre-
quency transfer characteristics of the system as a 
whole, from input value un to output detection value 
y~n, including characteristics of actuator, sensor, etc. 
Any type of system can be generalized with simple 
complex vectors as indicated by Expression (1). 
Value Pdn denotes Axis dn component of the real 
system in n-th frequency component and Pqn like-
wise denotes Axis qn component. 

Pn＝ Pdn＋ iPqn
 
 

 
(1) 

The basic operation follows up a conventional 
approach of disturbance observer. Based on the 
detection value yn of the n-th frequency component 
through the LPF, Model Q^n (＝ P^n

－1) of the inverse 
system Qn is used as shown in Expression (2)  
so that real system input u^n is estimated as in 
Expression (3). 

1＝ ＝＋Qn Qdn iQqn
＾ ＾

＋
＾

Pdn
＾ iPqn

＾    (2)

u^n＝ Q^nyn 
  (3)

Since the real system input un contains the 
periodic disturbance dn, Value d^n is estimated by 
subtracting the current reference value un

＊ through 
GF (s) from u^n of Expression (3), as indicated by 
Expression (4). 

d^n＝ Q^nyn－GF (s)un
＊

 
  (4)

When Value d^n of Expression (4) is subtracted 
from the periodic disturbance reference value dn

＊ 

(0 in the case of suppression), it is then possible to 
cancel the periodic disturbance dn. 

Axis qn (imaginary part)

Axis dn (real part)0

yn (output) ＝｜Pn｜｜un｜ei (φu＋φP)

Pn (system characteristic) ＝｜Pn｜eiφP

un (input) ＝｜un｜eiφu

The control system for the specific n-th order frequency compo-
nent can be expressed by a primary-order complex vector in a 
rotating coordinate system synchronized with its frequency.

Fig. 1 Characteristic Frequency Component in 
Complex Vector Expression 
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On the rotating coordinate system synchronized with periodic 
disturbance, the basic configuration of the generalized periodic 
disturbance observer is shown expressed in a complex vector. 
With such a simple control configuration, periodic disturbance 
can be removed.

Fig. 2 Basic Configuration of the Generalized Periodic 
Disturbance Observer
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2.2 Influence of Model Error 
In actual systems, there are a variety of changes 

in characteristics. Value Pn becomes a time-varying 
parameter. In this case, we have to examine the 
effect of Error Q^n≠Qn of the inverse model Pn upon 
the stability of the periodic disturbance observer. 
Assuming that the amplitude error of the inverse 
model Q^n is An (An＞ 0) and the phase error is φn  
(－π＜φn≦π), Value Q^n is defined as indicated by 
Expression (5). (The model is the true value when 
An＝1 and φ0＝ 0.) 

Q^n＝Ane iφnQn
 
 

 
(5) 

Expression (6) below can be derived from 
Expression (5) by defining the periodic disturbance 
response from the occurrence of periodic distur-
bance to the acquisition of detection value. Now 
assume that the periodic disturbance response 
transfer function is Cn(s), where ωf is the cutoff fre-
quency of primary LPF and s is a Laplace operator.

 
＝

＋
yn

dn
Cnωfs( ) ＋ωfs Ane iφn

ωf s
( ) s( )＝Pn Pn

 

 

 

(6)

In consideration of operation period Ts and 
algebraic loop avoidance to be accompanied by 
digital control in actual installations, Value Cn(s) is 
z-transformed and discretized to obtain Expression 
(7) below. 

＝
＋ －1 1Ane iφn( )

－1( )
GF

Cn z－1

z－1
( )

z－1( )
GFz－1 z－1( ) GFz－1 z－1( )

 

 

 

(7)

GF(z－1) can be regarded as a product of bilin-
ear transformation of GF (s) and it is substituted for 
Expression (7) to solve a characteristic equation. 
Fig. 3 shows an example of numerical solution 
assuming that the boundary conditions of robust 

stability to model error are Ts＝100μs and ωf＝ 
2πrad/s. As shown in this figure, the system 
becomes unstable when the phase error is greater 
than ±90 degrees, and allowance for stability against 
amplitude error becomes greater as the phase error 
is lowered. In regard to the effect of model error of 
the periodic disturbance observer, Fig. 4 shows an 
example of an operation check based on time-serial 
response waveforms (left side in the figure) of the 
periodic disturbance detection value and loci of 
complex vectors (right side in the figure). As is obvi-
ous from complex vector loci, periodic disturbance 
converges linearly on the origin (namely periodic 
disturbance is zero), provided that there is no model 
error. Even though there is periodic disturbance, 
convergence is still possible if it is kept within the 
stability domain. Conversely, in the instability domain, 
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In regard to the periodic disturbance observer model, presence 
of stability allowance is shown where amplitude error (vertical 
axis) and phase error (horizontal axis) are available. There is a 
certain level of robust stability, but instability appears when an 
error becomes eminent. 

Fig. 3 Robust Stability of the Periodic Disturbance 
Observer
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In regard to influence by model error of the periodic disturbance 
observer, time-related response waveform (left) and the locus of 
complex vector (right) are shown. According to the amount of 
model error, the locus changes at the time of convergence on the 
origin and it diverges when the amount of error is large. 

Fig. 4 Relationship between Model Error and Vector 
Locus



MEIDEN REVIEW  Series No.166 2016 No.136

periodic disturbance diverges, drawing a circle. In 
this case, periodic disturbance cannot be suppressed. 

According to the descriptions above, the peri-
odic disturbance observer is a control system having 
a robust property against model error. Its control, 
however, can be unstable if there is a large model 
error or any variation in characteristics of the oper-
ating system. In this connection, the auto-learning 
function for the detection and correction of model 
error will be explained in the next paragraph. 

2.3 Auto-Learning Function of Model Error 
As shown in Fig. 4, there is a specific relation-

ship between model error and complex vector locus. 
Paying attention to the geometrical information of 
this locus, we propose an approach for the detec-
tion and correction of the model error. 

Initially, we determine the detection value y~n of 
the n-th order periodic disturbance before LPF and 
the average value y－n with the learning control period 
TL. Then, in order to examine the response at time t 
on the complex plane of the average value y－n for 
n-th order periodic disturbance detection, we define 
Amplitude Rn and Phase Ψn on the polar coordi-
nates as indicated by Expression (8). As suggested 
by Expressions (9) and (10) and Fig. 5, we define 
the origin-direction vector Rn, periodic disturbance 
movement vector Ln, and angle ϕn between Rn and 
Ln, and then assume that the amount of periodic 
disturbance vector movement at micro-time ΔT is 
ΔLn, the amount of change in amplitude is ΔRn, and 
the amount of change in phase is ΔΨn. As a result, 
Expressions (11) and (12) hold according to the geo-
metrical relationship on the polar coordinates. 

y－n＝Rn(t)eiΨn ( t )   (8)

Rn＝－y－n (t－ΔT)   (9)

Ln＝ y－n (t)－y－n (t－ΔT)   (10)

2LnΔ t( ) Rn ΨnΔ Δt( ) 2Rn t( ) 2t( )＝ ＋  
  (11)

Rn

tan－1

Ψn

Δ
Δ

t(

t( )

)
Rn t( ) )t(

＝ Rn ｜｜ Ln×
Rn Ln・

tan－1＝
－
－

 ϕn

 

  (12)

As a result of the inverse Laplace transforma-
tion of response to periodic disturbance up to y－n in 
the case of application of a step disturbance input to 
dn as shown in Fig. 2, a time response equation of 
Expression (13) is obtainable. In this case, however, 
operation dead time is: ΔT＝TL. 

－1 s
t( )＝－

＝

yn Pn

Pn

＋ωfs Ane iφn

1
s

e－sTL

e－Anωf cos φn・(t－ TL) e－iAnωf sin φn・(t－ TL)

・

 
  (13)

When Expression (13) is compared with 
Expression (8), Values Rn and Ψn on the polar coor-
dinates can be expressed in Expressions (14) and 
(15) below. 

Rn(t)＝ Pne－Anωf cos φn・(t －TL)   (14) 

Ψn(t)＝－Anωf sin φn・(t－TL) 
  (15)

When Expressions (14) and (15) and differen-
tial equations (16) and (17) at the learning control 
period TL are substituted for Expressions (11) and 
(12), Expressions (18) and (19) can be obtained. 

ΔRn(t)＝Rn(t)－Rn(t－TL)

 ≃－PnAnωf cos φne－Anωf cos φn・t TL 
  (16)

ΔΨn(t)＝Ψn(t)－Ψn(t－TL)

 ＝－Anωf sin φnTL 
  (17)

ΔLn(t)≃ PnAnωf e－Anωf cos φn・t TL 
  (18)

ϕn(t)≃φn 
  (19)

When Expression (18) is divided by Expression 
(14) and then rearranged in terms of amplitude error 
An, a relationship of Expression (20) can be obtained. 

An≃ ωf Rn TLt( )
LnΔ t( )

 

 

 
(20) 

Judging from the result of analysis described 
above, the following relationship holds between the 
periodic disturbance vector locus on the complex 
plane and model error: 
(1) Phase error φn is equal to Angle ϕn between 
the periodic disturbance vector locus on the com-
plex plane and the direction to the origin. 
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Definition of the complex vector locus is shown in regard to geo-
metric information. 

Fig. 5 Various Definitions for Complex Vector Locus
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(2) Amplitude error An can be detected from the 
ratio of the amount of periodic disturbance vector 
movement ΔLn versus Distance Rn from the origin. 

For the detection of a model error in an actual 
case, however, it is necessary to bear in mind some 
significant facts such as the effect of characteristic 
variation in periodic disturbance other than step dis-
turbance and measurement-borne noise during the 
execution of detection through arbitrary filter treat-
ment. Model error is estimated with the use of 
Expressions (19) and (20) obtained from detection. 
In the case of deterioration of robust control perfor-
mance in the periodic disturbance observer, the 
model is sequentially corrected based on the esti-
mated value. In this manner, control can be auto-
matically stabilized even in the unstable domain as 
stated in Section 2.2 above. In addition, it is possi-
ble to improve control performance like a quick 
response reaction in the stable domain. 

Fig. 6 shows an example of a comparison 
between with or without an auto-learning function at 
An＝ 0.5 and φn＝ 5π/9 (unstable domain). For a 
model without a learning function, divergence 
occurs immediately. In the case of a model with a 
learning function, however, phase error of the model 

is first detected and corrected so that the error is 
correctly suppressed in the direction of conver-
gence. Subsequently, amplitude error is corrected 
for the improvement of converging speed. 

The features of our proposed method are sum-
marized below. 
(1) Since the system transfer functions of periodic 
disturbance are generalized with simple complex 
vectors, our method is applicable even to a compli-
cated control object. 
(2) When multiple periodic disturbance observers 
are installed in parallel to each other, multiple fre-
quency components can be managed. 
(3) Even though variations in system characteris-
tics and initial values of parameters are unknown, it 
is possible to stabilize and improve the control per-
formance while operation for suppression is contin-
ued with the use of the auto-learning function. 

3 Application to Power AF

In order to investigate potential applications of 
our generalized periodic disturbance observers pro-
vided with auto-learning functions introduced in the 
forgoing sections, we have examined the AF used 
in the power distribution system. Fig. 7 shows an 
empirical circuit configuration of the AF. The voltage 
source inverter functioning as an AF is connected in 
parallel to the interconnection point. Two types of 
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The effect of the auto-learning function is verified, for which the 
model error of the periodic disturbance observer is compensated. 
Time-based response waveform (left) and complex vector locus 
(right) are shown. Periodic disturbance is diverged without learn-
ing function, while it is converged on the origin when the learning 
function is used, and phase and amplitude errors are adjusted.

Fig. 6 Effect of the Auto-Learning Function for the Model
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This is empirical equipment intended to suppress harmonics  
in the power distribution system with the use of AF. In this case, 
the source current detection system is applied in order to sup-
press harmonics by feeding back the system current. Using the 
switches SW1 and SW2, impedance variations are simulated 
during suppression.

Fig. 7 Empirical Circuit Configuration of AF
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diode rectifier loads being the source of harmonics 
are also connected. The Switch SW1 is installed on 
the assumption that a phase-advancing capacitor 
bank is turned on in the middle of suppression oper-
ation. It is intended to modify the impedance char-
acteristics of the harmonics load 1. Switch SW2 
connected with the harmonics load 2 is used to sim-
ulate impedance characteristic changes in power 
distribution system and an increase in current car-
ried in the harmonics load. 

The control system of the AF is classified 
according to the positions for the detection of har-
monics, i.e. load current detection system, source 
current detection system, and voltage detection 
system. The voltage detection system, in principle, 
assures a greater allowance in stability than that of 
the current detection system and is effective in 
terms of harmonics propagation phenomena and 
damping property against system resonance. It is, 
however, difficult to suppress a systemʼs current 
harmonics with high accuracy. 

The source current detection system can also 
assure accurate compensation through direct 
detection of harmonic current that flows into the sys-
tem. This system, however, is liable to be influenced 
by impedance characteristic changes and control 
can become unstable. This paper describes our 
approach where the source current detection sys-
tem is adopted to maintain harmonics suppression 
accuracy, the auto-learning function is used to raise 
control stability, and difficulties of both are compen-
sated for accordingly. Our system is applicable 
on-line to unknown variations in impedances of 
power distribution systems that have been consid-
ered difficult to cope with. 

At the AF control block, the basic vector control 
of the inverter current synchronized with system 
voltage phase and control of DC voltage are carried 
out. In this state, harmonics suppression control of 
system current is is carried out with the use of the 
generalized periodic disturbance observer that has 
an auto-learning function explained elsewhere in 
forgoing paragraphs. 

Fig. 8 shows an example of an experimental 
result concerned with the power AF. Harmonics of 
5th, 7th, 11th, and 13th order are the object of suppres-
sion. The upper diagram shows the system currents 
and also their real and imaginary components at 
each order. The lower diagram is an enlarged one 
where Sections A, B, and C in the upper diagram 
are shown. They are the waveforms of load current 

iL, AF compensation current iAF, and system current 
is, respectively. Before the start of AF operation, the 
system is in such a condition that waveforms of load 
current including a distortion component are about 
to flow into the system directly. At Time 0, suppres-
sion control is started from a state where modelʼs 
initial value of the periodic disturbance observer is 
still incorrect. After the start, components of 5th, 7th, 
and 11th order harmonics can be suppressed because 
the model error is kept within the robust stability 
domain of the periodic disturbance observer. As indi-
cated by dotted circles, the model error conversely 
remains to stay in the instability domain and compo-
nents of the 13th order harmonics once go on in  
the direction of divergence. Due to the effect of 
auto-learning function, however, the model error is 
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AF control is started under the condition that the initial value of 
the model is incorrect, and switches SW1 and SW2 are turned 
on so that steep variation in power distribution system imped-
ance and increase in harmonic currents are actually created. 
Stable and preferable suppression performance, however, is ob-
tained by virtue of auto-learning function. 

Fig. 8 Result of Experiment on AF
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adjusted and these components likewise go on in 
the direction of convergence and suppression is 
finally completed. Successively, SW1 for the con-
nection of a phase advancing capacitor bank is 
turned on in order to simulate variations in imped-
ance characteristics during operation of suppres-
sion. Also in this case, the 13th order harmonics go 
on again in the direction of divergence due to the 
effect of model error. Similarly, when SW2 is turned 
on to increase the harmonic current rapidly, sup-
pression control can be continued without any prob-
lem. Judging from waveforms of the system current, 
it can be realized that harmonic distortion is removed 
and the resultant load current appears in a sinusoi-
dal waveform. Total Harmonic Distortion (THD) is 
also reduced and the obtained result appears pref-
erable. 

As described above, application of our pro-
posed control system is expected to result in the 
following effects: 
(1) For a system where impedance characteristics 
are unknown, it is unnecessary to perform any sys-
tem identification in advance nor any parameter 
adjustments for suppression control. 
(2) Even though any impedance characteristic 
should change in the middle of suppression opera-
tion, system instability cannot be caused and pre-
vention of harmonics propagation phenomena and 
the improvement of suppression performance can 
be automatically accomplished. 

4 Application to Motor Torque Ripple 
Suppression(1)-(3)

For another example of application of the peri-
odic disturbance observer, Fig. 9 shows an empiri-
cal configuration of torque ripple suppression con-
trol for PM motors. Inverters are used to perform a 
speed controlled operation by generalized vector 
control and the coupling shaft between the PM 
motor and the load is equipped with a torque meter. 
Since torque ripples are considered to be a kind of 
periodic disturbance generated in synchronization 
with rotating phase θ, frequency components of 
n-th torque ripples Tdn and Tqn are arbitrarily extracted 
from the detected torque value τdet so that suppres-
sion control is performed with the use of the afore-
mentioned periodic disturbance observer. In this 
case, however, a frequency of torque ripples also 
changes during speed-controlled operation. In the 
case of a model for the periodic disturbance observ-

er, its characteristics have to be therefore modified 
into system transfer characteristics according to the 
specific frequency. For this reason, we have devised 
to set up the tabulation of real and imaginary com-
ponents of frequency transfer characteristics in 
advance at the time of system identification. For 
example, for the tabulation of frequency transfer 
characteristics in a range of 1～1000Hz at the inter-
vals of 1Hz, the table can be established with the 
use of 1000 complex vectors. Using the number of 
revolution ωm, a complex vector corresponding to 
the torque ripple frequency is extracted from the 
table and applied as a model for the periodic disturb-
ance observer. In this method, torque ripples can be 
suppressed even in the middle of speed-controlled 
operation by sequentially updating the model. 

Fig.10 shows the result of experiments to 
investigate the torque ripples in the middle of a 
speed-controlled operation using the spectrograms 
(short-time Fourier analysis: time on the horizontal 
axis, frequency on the vertical axis, and the spec-
trum indicating the intensity of frequency compo-
nent). The spectrum (in the vicinity of 210Hz and 
590Hz) remained unchanged even with a change in 
time as a component of resonance frequency in the 
mechanical system. The spectrum with a frequency, 
changing with an increase in rotating speed, corre-
sponds to torque ripples. Judging from the result of 
operation without suppression control, conspicuous 
effects appear with 1st, 2nd, 6th, and 12th order com-
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A system configuration is shown, where torque ripple frequency 
component synchronized with motor rotating speed is detected 
and it is controlled with the periodic disturbance observer.

Fig. 9 Empirical Configuration of Torque Ripple 
Suppression Control
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ponents. In particular, a large torque resonance 
seems to occur at a crossing point with resonance 
frequency. In the case of operation with suppres-
sion control, spectra of components at the respec-
tive orders are sharply reduced and this is a good 
result verifying that there is no occurrence of any 
remarkable resonance. We have made many of 
other verification experiments in regard to, for exam-
ple, a system where no torque meter is used or a 
system of feed-forward approach with accumulated 
data such as results of measurements of transient 
and other phenomena. 

As described previously, the applied model  
is sequentially updated during speed-controlled 
operation. It is, therefore, not very easy to perform  
model-based correction by using auto-learning 

function. Under specific conditions, there may be a 
case when secular variations can occur in charac-
teristics of the motor driving system. As such, we 
make it a rule to use the auto-learning function of 
the model limited only to the cases when the motor 
is in steady-state operation (without changes in 
rotating speed and torque). Fig. 11 shows the result 
of experiments where the auto-learning function is 
applied. At the rotating speed of resonance with 12th 
order torque ripple component, experiments are 
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The result of spectrogram verification is shown, performed to 
verify the effect of suppression in the middle of speed-controlled 
operation. The spectrum intensity of torque ripples is reduced by 
the effect of suppression control and large torque resonance is 
also suppressed.

Fig. 10 Result of Speed Control Experiments on Torque 
Ripple Suppression Control
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When the motor is in a state of steady operation (constant torque, 
constant rotating speed), the auto-learning function is used to 
correct the model error.

Fig. 11 Empirical Result of Auto-Learning Function for 
Torque Ripple Suppression Control 
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started from a state where the modelʼs initial value 
is incorrect. When no learning function is used, con-
trol begins to diverge upon the start of suppression 
and the locus continues to move in unstable mode 
while the torque reference value keeps on saturat-
ing. With the learning function, once control once on 
diverging, but immediately afterwards, the model is 
quickly updated and suppression of torque ripples is 
successfully accomplished. 

Judging from the aforementioned, torque rip-
ple suppression for the PM motor by our proposed 
control system is expected to offer the following 
effects: 
(1) Torque ripples can be suppressed even in the 
middle of speed-controlled operation insofar as the 
systemʼs frequency transfer characteristics are tab-
ulated in advance. 
(2) Even though the initial values of parameters in 
the motor or a mechanical system are unknown, the 
model is automatically updated and torque ripples 
can be suppressed, provided that they are in the 
state of steady-state operation. 

5 Postscript

This paper introduced the generalized periodic 
disturbance observer system that has an auto-learn-
ing function developed as an approach for periodic 
disturbance suppression technologies. As an exam-
ple of application, features of the AF for power sys-
tem harmonics and torque ripple suppression for 
PM motors have been examined in this paper. The 
usefulness of this system is theoretically verified 

based on the result of experiments. Although this 
system is arranged into a simple control configura-
tion, it has exhibited a capability of automatic sup-
pression of periodic disturbance for any system 
where complicated characteristics and variations 
are involved. Our technologies are those of environ-
mental coordination to solve problems of systematic 
products such as vibration, noise, and resonance. 
These technologies are also related to the attain-
ment of easy maintenance by automated adjust-
ments and the improvement of control quality. Our 
control technologies are generalized and applicable 
to horizontal development toward other systems. 
Going forward, we intend to continue developing 
these applications. 

・ All product and company names mentioned in this paper are 

the trademarks and/or service marks of their respective owners.
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