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1 Preface

We manufacture and sell a chassis dynamom-
eter test system to reproduce road load driving at 
the test bench. The driving robot is equipment for 
automatic operation used to examine the operation 
of the accelerator pedal, brake pedal, clutch, and 
power transmission of a completed vehicle on the 
chassis dynamometer. Fig. 1 shows a driving robot. 
Compared with operation by a human test driver, 

operation performed by a driving robot is superior  
in terms of extended endurance driving and  
reproducibility of driving. There are a variety of tests 
for evaluating vehicle performance. In the case of 
exhaust gas emission and fuel consumption tests, 
vehicle performance is measured during follow-up 
driving (“driving in operating mode” hereafter) based 
on a vehicle speed pattern defined by the relevant 
standard (“mode” hereafter). Fig. 2 shows the 
WLTC (Worldwide-harmonized Light vehicles Test 
Cycle) mode. The mode used for testing is deter-
mined for specific countries and regions. The WLTC 
mode has been actively introduced as the interna-
tional standard. The ability to follow vehicle speed 
patterns is demanded in the market as the basic 
functional requirements of the driving robot is 
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Abstract

We are developing driving robots to be used as automatic operation equip-
ment for automobile testing. At present, there is currently a pressing demand for 
better perfect control performance of driving robots. In order to realize improved 
target speeds and a human-simulated pedal operation, we are working on the 
introduction of a control system based on Artificial Intelligence (AI) technologies. 

According to the prediction of feedforward manipulating variables with ac-
celerator pedals through supervised learning, the ability to follow a target speed 
was found to be higher than that of conventional control methods when knowl-
edge about vehicle dynamics including transient status was obtained through 
learning the driving history data. In addition, by substituting the control method 
with reinforcement learning, we could realize not only the ability to follow the 
target at a high speed, but also a predictive pedal selection.

The driving robot is loaded on the driver’s seat of a completed 
car so that the robot can manipulate the accelerator, brake ped-
als, and other devices. 

Fig. 1 Driving Robot
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The axis of abscissas is used to express time and coordinates 
indicating vehicle speed. During testing, driving conforming to 
such a vehicle speed pattern is required. 

Fig. 2 WLTC Mode
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ever-increasing. This paper introduces some exam-
ples of Artificial Intelligence (AI) technologies 
applied to the controls for a driving robot. This is to 
achieve better following for driving at the high level 
attained only by a professional test driver or realize 
human-simulated driving performance. 

2 AI Technologies

2.1 Background of AI Technologies 
AI is a technology to substitute a computer’s 

activities for a human’s intellectual activities. The 
first concept of this technology was born in the 
1950s. Fig. 3 shows the AI technological system. 
Since the early days of 1950s, approaches of rea-
soning, investigation, and knowledge representa-
tion was the mainstream. The current AI boom, 
however, is brought by a machine learning technol-
ogy of a neural network, particularly by deep learn-
ing. Neural network was known to exist since it’s 
inception, but is becoming recognized with the 
growth of computers based on the recognition of its 
high learning capability. 

Regarding learning method and data handling, 
machine learning is roughly classified into super-
vised learning, unsupervised learning, and rein-
forcement learning. Supervised learning is a learn-
ing method to obtain a rule between input and 
desired output (teacher) data. Reinforcement learn-
ing is a learning method that acquires an action 
decision policy to realize a desirable state in a series 
of actions.

Deep learning has not only been used as 
supervised learning, but has also been proposed for 
use as a superb function approximator in combina-
tion with the framework of reinforcement learning. 
Recently, this deep reinforcement learning has been 
increasingly noticed in the AI field. In the following 
section, we introduce our efforts in applying super-
vised learning and reinforcement learning by deep 
learning to the controls of driving robots.

2.2 Supervised Learning
In supervised learning, the machine learning 

model is trained so that the predicted output for cer-
tain input data comes close to the teacher data. By 
using a trained model, it is possible to obtain a pre-
dicted output as a response to the new input data. 

In order to carry out supervised learning, it is 
necessary to prepare a set of input and teacher 
data. For an application to the controls of driving 
robots, a practical vehicle running data is used as 
leaning data to obtain the vehicle dynamics between 
the target speed and accelerator pedal operation. 

2.3 Reinforcement Learning 
Fig. 4 shows the basic process of reinforce-

ment learning. In the reinforcement learning system, 
there are two prominent factors, “Environment” and 
“Agent.” The Agent determines an action based on 
the state of the environment and executes that 
action in the environment. The state of the environ-
ment changes according to the action of the agent, 
and the agent observes the new state and deter-
mines the next action. Simultaneously, when the 
status has been observed, the agent receives a 
“reward.” This reward is expressed by a scholar 
value that evaluates the state after an action. In 
reinforcement learning, an action policy is trained 
so that more rewards can be obtained as a result of 
a series of actions chosen by the policy. When 
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Fig. 3 AI Technological System
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A proper way to take reasonable actions is obtained by repeating 
experiences. 

Fig. 4 Basic Process of Reinforcement Learning
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learning of the control done by the driving robot, the 
agent is a driving robot and the environment is a 
vehicle. In this case, a reward is designed such that 
a larger value can be obtained when the deviation 
between detected vehicle speed and the target 
speed becomes smaller. For the reinforcement 
learning, it is possible to provide an obvious training 
objective, like “human-simulated driving.” 

3 Application of AI Technologies to 
Control

3.1 Application of Supervised Learning 
For one of the AI technology applications to the 

control of a driving robot, we tried to make a substi-
tution of driving force map in the neural network. 

Fig. 5 shows a schematic diagram of a con-
ventional control system by driving robots. In the 
conventional control of a driving robot, a control 
method, which is a combination of the Feedforward 
(FF) system called the driving force map and the  
FB system according to the vehicle speed deviation, 
is used to determine the accelerator pedal manipu-
lating value for driving in the operating mode. The 
driving force map specifies the relationship between 
the required driving force and the accelerator pedal 
value to realize the target speed of the mode. This 
map is established by recording the steady vehicle 
characteristics before the test. When the target 
speed and required driving force are given to this 
driving force map, the accelerator pedal manipu-
lating variable is obtained. Since transient vehicle 
dynamics are not reflected on the establishment of 
the driving force map, an error may appear in the 
accelerator pedal manipulating variable that is 
required during actual driving. As a solution, the FB 

system generates an output compensation variable 
for accelerator pedal manipulation in order to com-
pensate for the vehicle speed deviation. 

During our development activities, we substi-
tuted a neural network for the driving force map that 
in a part of a whole control system. Practically, the 
FF system indicated by dotted lines in Fig. 5 was 
replaced by the neural network. If the vehicle 
dynamics are learned encompassing the transient 
conditions during driving, improved ability to follow 
for driving in the operating mode can be expected 
as a result of attaining a high-precision prediction 
for the accelerator pedal manipulating value. 

To evaluate deep learning control, we carried 
out a simulation. For the neural network, actual driv-
ing data based on the driving force map was used 
as training data and various inputs such as the 
detected vehicle speed, required driving force, num-
ber of engine rotations, and target speed for the 
future constant time were entered to train the 
required output for the accelerator pedal manipu-
lating value. For upper-grade manipulation such as 
accelerator pedal/brake pedal changeover and 
brake pedal manipulation, the same method as for 
conventional control was used. 

Table 1 shows the driving result in WLTC mode 
by respective control methods. For the driving in the 
operating mode test, a permissible error range  
of ±1.0 s and ±2.0 km/h is stipulated for a com-

FF
control-
ler

FB
control-
ler

Driving
force
calcul-
ation

Driving
robot

Running
resistance
calculation

Brake pedal
manipulating variable

accelerator 
pedal
manipulating
variable

Vehi-
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The accelerator pedal control consists of a combination of the FF 
system (driving force map) and the FB system. 

Fig. 5
Schematic Diagram of a Conventional Control 
System by Driving Robots

Foul 
time

(s)

Mean 
vehicle 
speed 
error 
(km/h)

Max. 
vehicle 
speed 
error 
(km/h)

Accelerator 
pedal 
operating 
frequency 

(times)

Brake pedal 
operating 
frequency 

(times)

Conven-
tional 
control

0.00 0.44 4.27 38 41

Deep 
learning 
control 
FF＋ FB

0.00 0.28 2.48 42 43

Deep rein-
forcement 
learning 
control FF

0.00 0.37 2.56 51 52

Deep rein-
forcement 
learning 
control 
FF＋ FB

0.00 0.30 1.72 48 49

The result of driving for 1800 seconds in the WLTC mode is 
shown. Regarding the ability to follow the target speed, the result 
is verified acceptable when no foul is recorded, and the mean 
and maximum vehicle speed errors are minimal. Frequency  
of pedal operation is regarded as one of the indexes for human- 
simulated driving. 

Table 1
Driving Result in WLTC Mode by Respective 
Control Methods
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manded vehicle velocity at a specific time. In this 
case, the foul time is defined as a total deviation 
time from the permissible error range. Even in the 
case of a conventional control system, the foul time 
was 0 s, but both the mean and maximum vehicle 
speed errors were smaller than the values of the 
conventional control when a deep learning control 
approach was applied. 

Fig. 6 shows a partial section driving result in 
the WLTC mode. Some improvements can be per-
ceived in the ability to follow where vehicle speed 
deviation was substantial in the case of a conven-
tional control. Generally, the dependence on the FB 
system for accelerator pedal operation seemed to 
be small. Consequently, the ability to follow the tar-
get speed is improved because the prediction accu-
racy of the FF system has been improved by virtue 
of the deep learning control. 

According to Table 1, the number of pedal oper-
ation times is increased compared with the conven-
tional control. An increase in the number of pedal 
operation times implies that a changeover between 
accelerator pedal and brake pedal tends to be fre-

quent. Although the ability to follow and pedal 
changeover times can be a trade-off, the un-
necessary increase in the number of pedal opera-
tion times results in departing from human-simu-
lated driving. According to waveforms of accelerator 
pedal manipulating values in Fig. 6, variation in 
pedal operation is large in the case of deep learning 
control. A sudden change in pedal operation can 
also result in departing from human-simulated driv-
ing. In the case of supervised learning, the control 
performance obtained by learning tends to be 
depend ent on the nature of the training data. 
Learning is, therefore, considered indispensable to 
be based on humanly-driving achievement data to 
realize human-simulated driving. 

3.2 Application of Reinforcement Learning 
In our activities for the application of AI tech-

nologies to the driving robot control, we actively uti-
lized deep reinforcement learning. In this way, we 
tried to use learning for optimal selection and the 
manipulating method of the accelerator and brake 
pedals in the task of driving in the operating mode. 
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The upper row shows vehicle speed, lower row shows accelerator pedal manipulating value, left shows conventional control, and right 
shows deep learning control. The shaded vehicle speed waveform shows the permissible error range. 

Fig. 6 Partial Section Driving Result in WLTC Mode
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In the application of deep learning control as 
supervised learning, partial substitution of machine 
learning was adopted based on conventional con-
trol methods. In this case, however, the control 
method was drastically modified. For a conventional 
control method, manual work by engineers was 
needed, such as parameter adjustment for each 
vehicle and control designing. In the case of rein-
forcement learning system, however, the character-
istics per vehicle were recognized in the common 
learning processes and even subsidiary control 
rules, never devised in conventional controls, 
became obtainable. 

For the evaluation of deep reinforcement learn-
ing control, we conducted a simulation test. In the 
algorism of deep reinforcement learning, a process-
ing from state observation to the action choice is 
shown in Fig. 4, is attempted by using the neural 
network. The observed states are, an accelerator 
pedal detection variable accumulated during the 
constant period in the past, a brake pedal detection 
variable, number of engine rotations, the detected 
vehicle speed, target speed, and target speed for  

a constant future time. These data are inputted  
in the neural network where the accelerator and 
brake pedal manipulating values are outputted. The 
“reward” that is the basis of status evaluation for 
deep reinforcement learning is defined be the stand-
ard itemized below. 
(1) Larger when the ability to follow the target 
speed is higher. 
(2) Larger when pedal manipulation is smoother. 
(3) Larger when the pedal changeovers are less 
frequent. 

As shown in Table 1, even deep reinforcement 
learning control could realize driving in the operat-
ing mode with a zero-second foul time irrespective 
of whether the FB system was present or not. Both 
the mean and maximum vehicle speed errors were 
smaller than those of the conventional control and a 
high ability to follow performance to the target speed 
was obtained. When combined with the FB system, 
a higher ability to follow performance than the result 
of driving based on supervised learning was 
attained. Fig. 7 shows partial section driving result 
in the WLTC mode by the deep reinforcement learn-
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The upper row shows vehicle speed, lower row shows pedal manipulating variable, left shows deep reinforcement learning control FF, 
and right shows deep reinforcement learning control FF＋FB. The shaded vehicle speed waveform shows the permissible error range. 

Fig. 7 Partial Section Driving Result in WLTC Mode by Deep Reinforcement Learning Control 
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ing control. In the case of the conventional control 
as shown in Fig. 6, the FB system becomes too 
sensitive during acceleration around the time of 10 
seconds, thus making the accelerator pedal manip-
ulation too violent and causing overshooting as a 
result. In the case of deep reinforcement learning 
control, on the other hand, a target speed seems to 
be followed up as a result of smooth treading on the 
accelerator pedal. Judging from these factors, any 
pedal to be manipulated can be properly predicted 
and the feasibility of effective application to the con-
trol system is suggested, although there is still a 
margin of improvement for the prediction of pedal 
manipulating values. 

Meanwhile, compared with the result of deep 
learning controls supervised learning, the frequen-
cy of pedal manipulation was found to be higher. As 
shown in Fig. 7, brake pedal manipulation for about 
0.5 seconds can be seen around the time lapse of 
48 seconds. In this way, short-time pedal change-
overs can be seen several times. When the FB sys-
tem is combined, smooth pedal manipulation tends 
to be degraded. In order to realize human-simulated 
driving, we will focus our future challenges on 
reviewing the reward design and learning method. 

4 Postscript

This paper introduced two kinds of challenges 
regarding the application of AI technologies to driv-
ing robot controls. According to the prediction of the 
accelerator pedal manipulating values by deep 
supervised learning, vehicle dynamics including 
transient conditions can be obtained through actual 
driving data learning and the ability to follow the tar-
get speed can be obtained exceeding the achieve-
ment of the conventional control method. In the 
case of control by deep reinforcement learning, not 
only the ability to follow the target speed but also 
adequate pedal selection is obtained to follow up 
the target speed. 

Together with further improvement of the abili-
ty to follow, our future challenges are the reflection 
of human-simulated driving such as the reduction of 
pedal changeover frequency. We will work on exam-
ining the usability issue including the learning meth-
od needed at the time of real testing. 

・ All product and company names mentioned in this paper are 

the trademarks and/or service marks of their respective owners.


